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Chapter 1

Introduction

Cell-free (CF) massive multiple-input multiple-output (MIMO) technology has

been spotlighted as one of the most promising architectures for future wireless

networks [1, 2, 3, 4]. In the CF MIMO transmission scenario, massive-scale of

access points (APs) are spatially distributed across the coverage to jointly serve

users with shared radio resources as illustrated in Fig. 1.1.

1.1 Motivation

The quality-of-service with improved user fairness can be enhanced by the

macro-diversity of CF massive MIMO techniques [5]. For the full potential of

this concept, the qualified channel state information (CSI) from channel estima-

tion based on pilot training is of utmost importance [6]. However, the elimination

of cell boundaries incurs a main trade-off challenge in the pilot usage (see Fig.

1.2); The pilot reuse is unavoidable due to insufficient sequence diversity for or-

thogonal pilot assignment (PA) over the coverage [7]. Non-orthogonal PA among

pilot-sharing users is subject to the pilot contamination, degrading the channel

estimation accuracy and the subsequent system performance [6]. A proper strat-

egy is essential for alleviation of the contamination and improvement in network
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CPU

User

Figure 1.1: Cell-free massive MIMO system.

throughput.

Despite the urgent need for the optimal assignment of the pilot sequence, a

well-structured PA framework remains yet partially addressed, and the associated

combinatorial challenges are found computationally demanding [8]. Furthermore,

the resulting throughput gain to a group of pilot-sharing users is hard to address.

A variety of PA frameworks have been investigated for this challenge. A simple

approach sticks to a greedy policy that begins with a random assignment and

repeated modification of the worst case user for gradual throughput performance

improvement [1]. An iterative user selection is developed to assign orthogonal

pilots via bipartite matching implemented using Hungarian algorithms [9]. In

[10], a weighted graphic framework have been proposed that the contamination

factors defined between two UEs are used to assignment. The usage of a variant

of the hierarchical agglomerative clustering algorithm has been suggested in [11].

There have also been attempts to apply methods such as tabu-search [12] or graph

coloring [13] to PA in CF massive MIMO. Furthermore, a topological interference

management is considered in sparse connectivity cases [8]. Although a structured

PA framework is also proposed using K-means clustering, geographic information

2
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Figure 1.2: Pilot reuse problem in CF massive MIMO.

is used instead of throughput measurements [4].

1.2 Contributions

This work develops a new optimization framework for the CF massive MIMO

PA task. While existing works require a completely new PA on every coherence

interval, we consider some succession of previous assignments for sustainable PA.

In this regard, the maximization of the network utility is conducted under the

pre-assigned states for some users. The resulting optimization task is formulated

into a special class of quadratic assignment problems [14], which fall in a class

of NP-hard problems [15]. The PA challenge entails group-wise matching where

fixing an assignment of a group enables or disables assignments of many other

groups that share the same users. The PA solution space is thus separated into

interacting clusters of feasible configurations, thereby rendering the PA search

quickly demanding as the system scales up.
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To tackle this, a novel approach is developed by borrowing the principles of

survey propagation (SP) that has originally been derived to address the interac-

tion relationship among multiple particles from statistical physics [16, 17]. Based

on this formalism, multiple states of pilot to user-group association can be effi-

ciently described and solved using a distributed algorithm that obtains an efficient

solution. Thus, the proposed distributed algorithm inspired by survey propaga-

tion accomplishes a comprehensive search over the clusters of PA solution space

without brute-force enumeration.

1.3 Thesis Outline and Notations

The remainder of this thesis is organized as follows. The system model of CF

massive MIMO and the main metric are first introduced. In chapter 3, the corre-

sponding PA problem is formulated in combinatorial way. Our proposed framework

is provided in chapter 4. The design principles and derivations of SP algorithm are

also described in this chapter. The numerical results in chapter 5 demonstrate that

the network throughput is consistently achieved higher than existing techniques.

Finally, the major conclusion is suggested in chapter 6.

Throughout this thesis, a boldface lowercase letter, x, denote column vectors.

The superscripts ∗ and H denote conjugate and conjugate transpose, respectively.

The expected value of x is denoted as E{x}. NC(0,R) denotes the multivariate

circularly symmetric complex Gaussian distribution with correlation matrix R.

Other mathmetical notations in some expressions are described in the first part

where they first appear.
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Chapter 2

Cell-Free Massive MIMO System

A CF massive MIMO system consisting of M APs and K users (K ≤ M), all

equipped with a single antenna, is considered. Each user is served simultaneously

by multiple APs operating with the shared radio resource. The coherence intervals

of all channels are thus defined as the product of the coherence time and bandwidth.

Individual APs are connected to a central processing unit (CPU) via fronthaul that

provides error-free and infinite capacity links for straightforward focus on the PA

operation.

This work mainly considers the uplink transmission since there is no need for

downlink pilot training [1] and the channel reciprocity allows a straightforward

extension to the downlink transmission [4]. In the uplink transmission operating

in a time division duplex manner, a coherence interval, with its resource length

Nc, is divided into two phases: the uplink pilot training and the uplink payload

transmission. During the first training phase of lengthNp, users transmit dedicated

pilot sequences to APs, and APs attempt to estimate the user channel states. In

the second phase of length Nc − Np, the uplink signals are detected with those

estimates.

5



Figure 2.1: Uplink transmission in cell-free massive MIMO system.
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2.1 Uplink Training

Let φk ∈ CNp×1 be the unit norm pilot sequence used by k-th user, where Np of

orthogonal pilot sequences are available. The channel coefficient between the k-th

user and the m-th AP during a coherence interval, denoted as gmk, is defined by

the small-scale fading hmk and large-scale fading βmk of the corresponding user-AP

pair as gmk =
√
βmkhmk. We assume that the entries of hmk are independent and

identically distributed (i.i.d) NC(0, 1) random variables (RVs), and the channels

are constant during the coherence interval. The received pilot signal at m-th AP

is given by

ym =
√

ωNp

K∑
k=1

gmkφk + nm , (2.1)

where ω is the normalized transmit signal-to-noise ratio (SNR) of a pilot signal,

and nm is an additive noise vector of the m-th AP such that the elements of nm

are i.i.d. NC(0, 1) RVs. The estimate of gmk obtained based on a minimum-mean

square error is given by

ĝmk =
E
{(

φH
k ym

)∗
gmk

}
E
{∣∣φH

k ym

∣∣2} (
φH

k ym

)
= cmk

(
φH

k ym

)
, (2.2)

where

cmk ≜

√
Npωβmk

Npω
∑K

k′=1 βmk′
∣∣φH

k φk′
∣∣2 + 1

. (2.3)

From the randomness assumptions for corresponding RVs, the mean-square channel

estimate, denoted as γmk, is given by

γmk ≜ E
{
|ĝmk|2

}
=

Npβ
2
mk

Np

∑K
k′=1 βmk′

∣∣φH
k φk′

∣∣2 + 1/ω
. (2.4)

The orthogonal PA leads to
∣∣φH

k φk′
∣∣2 = 0 if k′ ̸= k. The number of users K

generally exceeds the number of orthogonal pilot resources Np, and the same pilot

7



sequences are necessarily reused in the assignment[1, 18]. The quality of the chan-

nel estimate ĝmk is degraded by the signal transmitted from a pilot-sharing user

k′ with φk′ = φk. This induces the pilot contamination. Fig. 2.1(a) illustrates

a simple example. Two pilot resources are assigned to three users. While AP 1

estimates the channel for user 1, pilot signals from users 2 and 3 interfere due to

the pilot reuse.

2.2 Uplink Payload Data Transmission

In uplink payload transmission from users in Fig. 2.1(b), all K users simulta-

neously send their data to the APs, and each AP detects the signals from channel

estimates and sends them to the CPU. According to an analysis in [1], the received

signal collected at the CPU can be decomposed into the desired signal (DS) com-

ponent, the beamforming uncertainty (BU) component, the user interference (UI)

component, and noise. Their average powers of k-th user are given, respectively,

by

DSk = ωηk

(
M∑

m=1

γmk

)2

, (2.5a)

BUk = ω
K∑

k′=1

ηk′

M∑
m=1

γmkβmk′ , (2.5b)

UIkk′ = ωηk′

(
M∑

m=1

γmk
βmk′

βmk

)2 ∣∣φH
k φk′

∣∣2 , (2.5c)

where
√
ηk is a power control coefficient of the k-th user, i.e., ηk ∈ (0, 1]. We

assume that the normalized uplink transmit SNR is equal to that of pilot signals,

ω. Note that (2.5c) corresponds to the degradation effect of the pilot reuse on

an achievable rate of k-th user in case of k ̸= k′. The signal to interference and

noise ratio (SINR) of k-th user and the corresponding achievable rate are given,

8



respectively, by

SINRk =
DSk

BUk +
K∑

k′ ̸=k

UIkk′ +
M∑

m=1
γmk

, (2.6a)

Rk =

(
1− Np

Nc

)
log2 (1 + SINRk) . (2.6b)

The network throughput maximization is the main purpose of this work. In the

next chapter, the PA optimization task is formulated with the achievable rate for

each user.
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Chapter 3

Pilot Assignment Problem

The achievable rate for each user is damaged by the interference among pilot-

sharing users. In this regard, the PA management is required constantly to ensure

the network performance. While the pilot resources are repeatedly managed for

each coherence interval, the large-scale channel parameters for some users are as-

sumed to be preserved even if the interval is updated. In order to alleviate the

computational loads, the latest assignments for those cases can leverage the non-

orthogonal PA task. The initial setup policy is conducted so that the results of

previous assignments for static users are maintained in the new PA. To this end,

such users are preassigned with the same pilot sequence as the previous assign-

ment, and it is assumed that Np of users are orthogonally preassigned to all of the

pilot resources.

For ease of description, a simple example in Fig. 3.1 is considered where two

pilots are assigned to six users and both are preassigned to user 1 and user 4,

respectively. Let a set Pa be indices of preassigned users to which the a-th pilot

sequence is dedicated, i.e., P1 = {1} and P2 = {4}. The PA problem is character-

ized by a combinatorial optimization to select pilot-sharing groups that share the

same pilot sequences as the preassigned users. The PA solution is obtained so that

the number of pilot-sharing users is as uniform as possible over pilot sequences.

10



1-st pilot sequence 2-nd pilot sequence

 Estimates degradation
&

interference

 Estimates degradation
&

interference

User 1 User 4

? ? ? ?

User 1 User 4User 2 User 5 User 6User 3

Six users and two pilot resources

preassigned preassigned

Figure 3.1: An example of 6-user PA with preassignment.
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1-st pilot 2-nd pilot

User 1 User 4

User 2 User 5 User 6User 3

Users

Feasible groups

Pilot sequences

Preassigned
groups

Preassigned
users

Figure 3.2: The relationship among variables in a 6-user PA example.

Since K−Np remaining users need the assignment, it is grouped into (K −Np)/Np

members, and there are
( K−Np

K/Np−1

)
different feasible groups. Let Ki denote the i-th

feasible group (i = 1, . . . ,
( K−Np

K/Np−1

)
). In the example, we have

(
4
2

)
= 6 feasible

groups, i.e., K1 = {2, 3}, . . . ,K6 = {5, 6}. Since each user is assigned a single

pilot, the feasible groups are selected so that the elements do not overlap in one

solution. For the concrete indication of the PA, an integer variable xi is associated

with the pilot sequence assigned to users in group Ki. Thus, It holds that xi = a

if the group Ki is matched with a-th pilot and xi = 0 otherwise. In addition, the

corresponding state vector x = [x1, . . . , x6] is defined. Fig. 3.2 shows the example

for the case where K1 and K6 are used for PA among the feasible groups. The

corresponding solution is x = [1, 0, 0, 0, 0, 2].

Among the valid states, PA tasks are purposed to find the optimal solution that

maximizes the network-wide utility such as sum-rate. A partial sum-rate denoted

12



by Ria is defined corresponding to the pilot-sharing members if users in Ki are

assigned to the a-th pilot and given as

Ria ≜
∑
k∈Ki

Rk +
∑
l∈Pa

Rl . (3.1)

3.1 Generic Formulation

Let I denote the set of indices for feasible groups and A = {1, . . . , Np} be the

set for pilot resources. the corresponding PA problem is formulated as

(P1) max
x

∑
i∈I

∑
a∈A

RiaI (xi = a) (3.2a)

subject to xi ∈ A ∪ {0} , ∀i ∈ I , (3.2b)∑
i∈I

I (xi = a) ≤ 1 , ∀a ∈ A , (3.2c)

∑
i′∈N (i)

I ((xi ̸= 0) ∧ (xi′ ̸= 0)) = 0 , ∀i ∈ I , (3.2d)

where I(·) is the indicator function that yields one if the input statement holds

true and zero otherwise, ∧ is the logical intersection, and N (i) is the set of neigh-

borhoods of the i-th group, i.e., N (i) = {i′ : Ki ∩ Ki′ ̸= ∅, i′ ̸= i}. The constraint

in (3.2c) indicates that at most one group is allocated to each pilot. Furthermore,

the constraint in (3.2d) means that feasible groups containing the same users are

not used simultaneously for a PA solution.

3.2 Unconstrained Optimization Formulation

The constraints in (P1) are associated with the groups assigned to individual

pilots. This point of view motivates the introduction of a new function that con-

13



siders the entire constraints. To represent them in an analytical way, a penalizing

function for a-th pilot, Fa (x), is defined to return a negative infinite value when

the input vector x violates constraints related to (3.2c) and (3.2d) as

Fa (x) ≜



−∞ if
∑
i∈I

I (xi = a) > 1 ,

or ∃i s.t.
∑

i′∈N (i)

I ((xi ̸= 0) ∧ (xi′ ̸= 0)) ̸= 0 ,

0 otherwise .

(3.3a)

(3.3b)

(3.3c)

Note that the case (3.3a) is associated with the constraint in (3.2c), but specifically

focuses on the a-th pilot. The case (3.3b) corresponds to that some neighboring

groups are used in a PA solution so violating the constraint in (3.2d). Likewise, a

utility function Ri is defined to represent the weight for the objective function by

the value of variable xi as

Ri (xi) ≜
∑
a∈A

RiaI (xi = a) . (3.4)

An unconstrained optimization formulation from (P1) is obtained from (3.4)

as

(P2) max
x

∑
i∈I
Ri(xi) +

∑
a∈A
Fa(x) . (3.5)

The optimal solution of (P2) is identical to that of (P1). Since this is factorized

as a simple sum of utility functions and penalizing functions, this allows us to

establish a distributed approach to solve the problem. The optimal states are found

locally by individual functions, and their information is exchanged for comparison

with each other. The state variables are repeatedly corrected to deactivate all

the penalizing functions and are expected to converge to a global solution that

14



optimizes the total sum of the utility functions. In the next chapter, we presents

an efficient solution for (P2) based on a cooperative consideration over a graphical

representation of the overall optimization task.
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Chapter 4

Distributed Algorithm via Sur-

vey Propagation

It is noted that the PA problem inherits a unique nature that states interac-

tively constrain each other, thus incurring many local solutions that significantly

differ from the optimum. This corresponds to so-called replica symmetry breaking

phenomenon in the field of statistical physics [19]. The SP [16] approach is in-

vestigated to tackle this challenge induced by such property. From the analogy of

the PA solution space with the formation of stable interaction relationships among

variables, this approach can be exploited to characterize an efficient distributed

solution [17]. To be precise, the central peak-point probabilities of the PA con-

tained in a cluster of the local optimal solutions are found by implementing a

distributed search algorithm via message-passing techniques [20, 21]. Therefore,

individual users may be able to participate in obtaining computationally demand-

ing solutions. A detailed description of the strategy is presented in the following

sections.
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(a) (b)

Figure 4.1: Graphical representation for pilot assignment problem. (a) Factor

graph model for (P2). (b) Two types of messages between Fa and xi.

4.1 Graphical Representation

To derive the corresponding message-passing based distributed algorithm, the

structure of a graphical model that facilitates the understanding of the problem

structure is necessarily considered. Fig. 4.1(a) illustrates a factor graph model [20]

associated with the toy example. Note that if the group K1 is used for assignment,

it limits the groups in N (1) unused. While the use of K1 constrains the states of

corresponding neighbor groups, other states are not determined but are prohibited

from assigning the same pilot with K1.

17



4.2 Derivation of Algorithm

4.2.1 Design Principles for Computation

According to generic message-passing computational rules [20], the tendency

for the allocation of the a-th pilot to group Ki in optimal states are characterized

by messages exchanged between node xi and node Fa. To this end, two different

types of messages are defined, respectively, as shown in Fig. 4.1(b): ρia(xi = x), a

message transferred from xi to Fa informing how evident the value of xi can take

on a value of x, and αia(xi = x), a message sent from Fa to xi representing how

preferable the value of xi = x is to satisfy the constraint enforced by the factor

function Fa. Under equilibrium states, both messages necessarily represent certain

relationships between group Ki and a-th pilot is given according to the state of xi

to maximize unconstrained formulation (P2) as

ρia(xi) = Ri(xi) +
∑
b̸=a

αib(xi) , (4.1)

αia(xi) = max
x\{xi}

(
Fa(x) +

∑
j ̸=i

ρja(xj)
)
. (4.2)

Thus, ρia(xi) and αia(xi) take the values associated with the maximal objective

when group Ki is assigned to the a-th pilot.

However, there may exist too many states of a PA task that slightly differ from

optimal state x and take corresponding objective values very close to the optimum.

In order to control all these assignments collectively, a basic principle of handling

combinatorial optimization with the SP framework is applied by introducing multi-

ple possible states for individual discrete variables, representing chosen, unchosen,

and undetermined. In the PA task, the state of an individual variable xi imposed

by the constraint Fa can be categorized into three types: assigned, idle, and else-
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where. If xi = a, any group that shares members with Ki becomes idle, and no

other group is assigned to the a-th pilot. If xi = 0, which means that Ki is idle,

other groups do not care about it and go into the so-called don’t-care state[16]. If

xi /∈ {0, a}, which is associated with the elsewhere state, only the neighbor groups

of Ki are restricted to being idle.

To consolidate the relationship among these three states, three different types

of messages are defined, i.e., {ρ(a)ia , α
(a)
ia } and {ρ

(0)
ia , α

(0)
ia } along with new messages

associated with elsewhere state, {ρ(∗)ia , α
(∗)
ia }.

4.2.2 Messages for Assigned States

If xi = a, the message ρia(xi) is computed as follows.

ρia(a) = Ri(a) +
∑
b̸=a

αib(a) = Ria +
∑
b̸=a

αib(a) . (4.3)

Since the group Ki is assigned elsewhere from the b-th pilot such that b ̸= a,

ρ
(a)
ia = Ria +

∑
b̸=a

α
(∗)
ib . (4.4)

In the same case, the message αia(xi) is computed as follows.

αia(a) = max
x\{xi}

(
Fa(x) +

∑
j ̸=i

ρja(xj)
)
. (4.5)

To avoid the penalizing function Fa returns negative infinity, all of the other state

variables in x are prohibited to be a. The assigned message α
(a)
ia is then given by

α
(a)
ia =

∑
i′∈N (i)

ρ
(0)
i′r +

∑
i′′∈N (i)c\{i}

max
(
ρ
(0)
i′′r, ρ

(∗)
i′′r

)
. (4.6)
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4.2.3 Messages for Idle States

If xi = 0, the message ρia(xi) is computed as follows.

ρia(0) = Ri(0) +
∑
b̸=a

αib(0) =
∑
b̸=a

αib(0) . (4.7)

The corresponding idle message is straightforwardly given as follows, although the

message α
(0)
ia is not.

ρ
(0)
ia =

∑
b̸=a

α
(0)
ib . (4.8)

To compute the idle message α
(0)
ia , we divide the idle state into two cases.

• a-th pilot is utilized anyway:

There is only one j ̸= i s.t. xj = a,

then xj′ = 0 for j′ ∈ (N(j)\{i}) and xj′′ ̸= a for j′′ /∈ (N(j) ∪ {i}).

• a-th pilot is not used for the uplink training:

∄j ̸= i s.t. xj = a.

Since the message α
(0)
ia returns the maximum value among these cases, it is given

by

α
(0)
ia = max


max
j ̸=i

(
ρ
(a)
ja +

∑
j′∈N (j)\{i}

ρ
(0)
j′a +

∑
j′′∈N (j)c\{i,j}

max
(
ρ
(0)
j′′r, ρ

(∗)
j′′r

))
,

∑
j ̸=i

max
(
ρ
(0)
ja , ρ

(∗)
ja

)
.

(4.9)

4.2.4 Messages for Elsewhere States

For representing a number of elsewhere states, we pick the maximum value of

ρia(xi) and αia(xi), while xi /∈ {0, a}, respectively. The message ρ
(∗)
ia is then given
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by

ρ
(∗)
ia = max

b̸=a

(
Rib + α

(b)
ib +

∑
s/∈{a,b}

α
(∗)
is

)
. (4.10)

We divide the idle state into two cases as same as α
(0)
ia to compute the idle

message α
(∗)
ia , but the states of neighbor groups are limited to be idle in both of

cases. Remainer descriptions of each case are as follows.

• a-th pilot is utilized anyway:

There is only one j /∈ (N (i) ∪ {i}) s.t. xj = a,

then xj′ = 0 for j′ ∈ (N(i) ∪N(j)) and xj′′ ̸= a for others.

• a-th pilot is not used for the uplink training:

There is no state variable xj such that xj = a.

Note that if j /∈ N (i), i /∈ N (j). The corresponding message is given by

α
(∗)
ia =

∑
i′∈N (i)

ρ
(0)
i′a

+max



max
j∈N (i)c\{i}

(
ρ
(a)
ja +

∑
j′∈N (j)\N (i)

ρ
(0)
j′a +

∑
j′′∈N (j)c\({i}∪N (i))

max
(
ρ
(0)
j′′a, ρ

(∗)
j′′a

))
,

∑
i′′∈N (i)c\{i,j}

max
(
ρ
(0)
i′′a, ρ

(∗)
i′′a

)
.

(4.11)

4.3 Rules for Message Update and Decision

The message-passing algorithm is conducted to collect the information of opti-

mality that is encoded as aforementioned descriptions. Upon convergence of the
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messages, The decision of the value for xi is made using

b̃ia ≜ (ρ
(a)
ia − ρ

(0)
ia ) + (α

(a)
ia − α

(0)
ia ) , (4.12)

b̄ia ≜ (ρ
(a)
ia − ρ

(∗)
ia ) + (α

(a)
ia − α

(∗)
ia ) . (4.13)

If group index a is found with possible maxa b̃ia, the i-th users combination is

assigned the x̂i-th pilot resource, which is given by x̂i = argmaxa b̄ia. Otherwise,

the i-th users combination is released idle.

Note that the finally used forms of the messages are only two measures, differ-

ence between assigned state and idle state ({ρ(a)ia − ρ
(0)
ia , α

(a)
ia − α

(0)
ia }), difference

between assigned state and elsewhere state ({ρ(a)ia − ρ
(∗)
ia , α

(a)
ia − α

(∗)
ia }). While the

compactness of the message exchange is essential, it is sufficient to make decisions

by the compressed forms of messages that are reduced from three to two types.

The corresponding measures can be defined and calculated, respectively, as

ρ̃ia ≜ ρ
(0)
ia − ρ

(∗)
ia =

∑
b̸=a

(α̃ib − ᾱib)−max
b̸=a

(Rib − ᾱib) ,

(4.14)

ρ̄ia ≜ ρ
(a)
ia − ρ

(∗)
ia = Ria −max

b̸=a
(Rib − ᾱib) , (4.15)

α̃ia ≜ α
(0)
ia − α

(a)
ia

=

[
max
j ̸=i

(
ρ̄ja − [ρ̃ja]

+
+
∑

j′∈N (j)\{i}

[ρ̃j′a]
−
)]+

−
∑

i′∈N (i)

[ρ̃i′a]
−
, (4.16)

ᾱia ≜ α
(∗)
ia − α

(a)
ia

=

[
max

j∈N (i)c\{i}

(
ρ̄ja − [ρ̃ja]

+
+
∑

j′∈N (j)\N (i)

[ρ̃j′a]
−
)]+

, (4.17)

where [ · ]+ = max(0, · ), [ · ]− = min(0, · ). Then the decision variables are

caculated as followings.
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Algorithm 1 Distributed PA algorithm

Input: Partial sum-rate {Ria} for all (i, a) in (3.1).

Output: Pilot indices of all users {xi}
1: Initialization : Set α̃

[1]
ia = 0, and ᾱ

[1]
ia = 0 for all (i, r) and t← 1.

repeat

Message updates

2: Update ρ̃
[t]
ia and ρ̄

[t]
ia using (4.14) and (4.15), respectively.

3: Update α̃
[t+1]
ia and ᾱ

[t+1]
ia using (4.16) and (4.17).

Tentative decision

4: Evaluate b̃ia and b̄ia using (4.18) and (4.19).

5: if (maxa b̃ia > 0) then xi ← argmaxa b̄ia.

6: else xi ← 0.

7: Increment : t← t+ 1.

until Convergence of all messages

8: return Allocate pilot according to {xi}.

b̃ia = (ρ̄ia − ρ̃ia)− α̃ia , (4.18)

b̄ia = ρ̄ia − ᾱia . (4.19)

Algorithm 1 summarizes the overall SP-based distributed algorithm, where in-

dividual message update computations can be handled by individual users and

tentative decisions are made by the CPU interconnected to APs.
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Chapter 5

Numerical Results

5.1 Experimental Setup

This section presents numerical results to test the performance of the developed

algorithm. A CF massive MIMO configuration is considered so that M APs and K

users are equipped with a single antenna and randomly distributed over a 500m×

500m square area. The simulation region is wrapped around in order to mitigate

the boundary effects [1]. The heights of APs and users are set as 10m and 1.5m,

respectively. The communication bandwidth of 20MHz and carrier frequency of

2GHz are used. The normalized transmit SNR is set to ω = ω̄/ωnoise, with ω̄ =

100mW and the noise power ωnoise = −92dBm. The 3GPP Urban Microcell path

loss model is used to set large-scale propagation conditions, where the shadow

fading model is set to zmk ∼ N (1, σ2
sh) with σsh = 4dB [22, Table B.1.2.1-1]. The

length of the coherence interval Nc is taken as 200. We assume that the channels

are constant during the coherence interval, and all users transmit with full power

so that ηk = 1.

The proposed algorithm is compared with three existing PA schemes based

on greedy algorithm [1], K-means clustering [4], and Hungarian algorithm [9].

The greedy strategy repetitively identifies the pilot-user pair with the least user
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throughput and assigns a new pilot sequence to the identified user while fixing all

other PA configurations. In K-means clustering based PA, all users are grouped

by Np members, then pilots are assigned orthogonally to users in each cluster.

At this time, ⌈K/Np⌉ centroids for the deployment of the APs are used for user

clustering, and the centroids have been trained through the K-means clustering

algorithm. On the other hand, Hungarian algorithm-based strategy execute the

following tasks sequentially for each user: select Np − 1 users with the highest

proximity and conduct the bipartite matching for PA while the assignment of other

users is fixed. In each simulation, Np users are chosen at random and orthogonal

pilots are preassigned to them so that PA is needed for the otherK−Np users. Note

that pre-assignment for some users poses a risk of performance degradation instead

of improving the PA complexity. For other benchmarks, we set up those to show

full performance without pre-assignment. We evaluate the additional gain for SP

framework with respect to Hungarian algorithm, K-means clustering, and greedy

algorithm, respectively. The corresponding percentages are calculated based on

the performance of each benchmark.

5.2 Results and Discussions

Fig. 5.1 illustrates the cumulative distribution function of the system through-

put in uplink with M = 100, K = 45, and Np = 15. The proposed algorithm,

SP, outperforms other benchmarks constantly over the simulation, thus indicating

that the pilot contamination is effectively mitigated. The average system through-

put obtained by SP is about 744 Mbps, which corresponds to the improvement

over compared schemes by 2%, 5%, and 10.3% respectively. In addition, a popu-

lar metric for PA is the network throughput for the worst 5% PA configurations

[4, 9]. SP obtains the value of 657 Mbps, and this amounts to 3%, 6%, and 13%

improvement over others, respectively. Thus, the population of low throughput
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Figure 5.1: Cumulative distribution function of system throughput where

K = 45,M = 100, Np = 15.
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Figure 5.2: Average system throughput versus number of users where K ∈
{15, 30, 45, 60, 75},M = 100, Np = 15.

users is decreased by the proposed method.

Fig. 5.2 depicts the average system throughput where M = 100 and K ∈

{15, 30, 45, 60, 75}. The number of users per orthogonal pilot resources, K/Np, is

fixed to 3. For large user populations, the system throughput growth under all

PA strategies attenuates due to the additional beamforming uncertainty and user

interference from the network congestion. At the largest population of K = 75,

the SP framework results about 907 Mbps then outperforms Hungarian algorithm,

K-means clustering, and greedy strategies, respectively, by 1%, 4%, and 9%. This

shows the robustness to the network congestion with respect to benchmarks.

The SP approach is suited to optimize corresponding tasks for network through-

put maximization from the advantage achieved by organizing the PA task from a

group-wise matching framework. This allows the achievable rate to be directly uti-
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lized in network management. Through the developed algorithm, the PA operation

can be configured to explore the solution space of the PA efficiently.
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Chapter 6

Conclusion

This work develops a survey propagation based distributed algorithm that con-

ducts the CF massive MIMO pilot assignment optimization. The developed al-

gorithm can efficiently describe the association of groups of multiple users to a

pilot sequence to be shared and determine the corresponding best matching im-

plemented via a message-passing approach. Numerical experiments demonstrate

that the proposed framework outperforms other existing schemes with respect to

the overall network throughput.
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Appendix A

Python Codes

Our demonstration has been conducted in a python environment. The following

python codes execute the message updates and decision process. Note that this is

abstract information for the implementation of SP algorithm and other functions

such as weight(partial sum rate) generator are required for the simulation.

import numpy as np

# x: state vector, x_j0: state of preallocated user

def configurations(dim_x, n_pilot, neighbor_mapping, x_j0):

map_neighbor = np.zeros((dim_x, dim_x), dtype=int)

j0_prime = np.zeros((dim_x, dim_x, dim_x), dtype=int)

j0_window = np.zeros((dim_x, dim_x, n_pilot), dtype=int)

for i in range(dim_x):

neighbor_mapping[i, neighbor_mapping[i]] = 1

j0_window[i, x_j0[i], :] = 1

for j0 in x_j0[i]:

j0_prime = list(set(neighbor_mapping[j0]) - set(
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↪→ neighbor_mapping[i]))

j0_prime[i, j0, j0_prime] = 1

j_prime = np.tile(neighbor_mapping, (dim_x, 1, 1))

col_window = 1 - np.tile(np.expand_dims(np.eye(dim_x, dtype=int)

↪→ , axis=1), (1, dim_x, 1))

j_prime[col_window==0] = 0

row_window = 1 - np.tile(np.expand_dims(np.eye(dim_x), axis=2),

↪→ n_pilot)

return neighbor_mapping, j_prime, j0_prime, row_window,

↪→ j0_window

# R: matrix of partial sum-rates

# rT: rT, rB: rB

# aT: aT, aB: aB

def update_rho(R, aT_now, aB_now):

dim_x, n_pilot = np.shape(R)

rB_now = np.zeros(shape=(dim_x, n_pilot))

rT_now = np.zeros(shape=(dim_x, n_pilot))

for r in range(n_pilot):

aT_except_r = np.delete(aT_now, r, axis=1)

aB_except_r = np.delete(aB_now, r, axis=1)

R_except_r = np.delete(R, r, axis=1)

rT_now[:, r] = R[:, r] + np.sum(

aT_except_r - aB_except_r, axis=1)

rB_now[:, r] = R[:, r] - np.max(

R_except_r + aB_except_r, axis=1)

return rT_now, rB_now
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def update_alpha(map_neighbor, j_prime, j0_prime,

row_window, j0_window, rT_now, rB_now):

dim_x, _ = np.shape(rT_now)

diff_rBT_n = np.minimum(rB_now - rT_now, 0)

diff_rBT_p = np.maximum(rB_now - rT_now, 0)

rB_tile = np.tile(rB_now, (dim_x, 1, 1))

diff_rBT_p_tile = np.tile(diff_rBT_p, (dim_x, 1, 1))

diff_rBT_n_tile = np.tile(diff_rBT_n, (dim_x, 1, 1))

j_prime_term_tile = np.matmul(j_prime, diff_rBT_n_tile)

j0_prime_term_tile = np.matmul(j0_prime, diff_rBT_n_tile)

term1 = np.matmul(map_neighbor, diff_rBT_n)

term2 = -rB_tile + diff_rBT_p_tile - j_prime_term_tile

term2[row_window==0] = INFIN

aT_next = term1 + np.minimum(np.min(term2, axis=1), 0)

term3 = -rB_tile + diff_rBT_p_tile - j0_prime_term_tile

term3[j0_window==0] = INFIN

aB_next = np.minimum(np.min(term3, axis=1), 0)

return aT_next, aB_next

def make_decision(x, aT_now, aB_now,

rT_now, rB_now):

dim_x = len(x)

dim_r = np.size(aT_now, axis=1)

allocation = np.zeros(dim_x)
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b_tilde = aT_now + rT_now

b_bar = aB_now + rB_now

for i in range(dim_x):

if np.max(b_tilde[i, :]) > 0:

allocation[i] = np.argmax(b_bar[i, :])

else:

allocation[i] = None

for r in range(dim_r):

if np.count_nonzero(allocation==r) == 0:

i_argmax = np.argmax(b_tilde[:, r])

allocation[i_argmax] = r

return allocation
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